

开明出版社

	第 1 练	集合与常用逻辑用语 ······	001	第~	17 练	信
	第2练	不等式的性质与基本不等式	003			
	第3练	二次函数、一元二次方程与不等式 …	005	第	18 练	译
	第4练	函数的概念及其表示	007			•
	第5练	函数的单调性与最值	009	第~	19 练	Ξ
	第 6 练	函数的奇偶性、对称性与周期性	011	第 2	20 练	
Ð	热点提升	1 函数的性质与应用	013			
Ð	阶段验收	1 8 单选+3 多选+3 填空+函数性质		第 2	21 练	<u> </u>
			014			•
	第7练	指数、对数的运算	016	第 2	22 练	<u> </u>
	第8练	指数、对数函数的图象及其性质	018			角
	第9练	幂、指数、对数函数之间比较大小	020	第2	23 练	
	第 10 练	函数的图象	022	第 2	24 练	
	第 11 练	函数的零点与方程的解	024	第 2	25 练	角
	第 12 练	函数与数学模型	026	第 2	26 练	角
Ð	热点提升	2 函数的零点的综合问题	028	阶段	⊋验↓	女 3
	第 13 练	导数的几何意义及其应用	029			
	第 14 练	导数与函数的单调性、极值与最值		第 2	27 练	<u> </u>
			031	第2	28 练	<u> </u>
	第 15 练	导数与不等式的恒成立、能成立问题		第 2	29 练	<u> </u>
			033	第3	80 练	<u> </u>
	第 16 练	导数与函数的零点	035	第3	31 练	复
Ð	阶段验收	2 8 单选+3 多选+3 填空+函数与导	数 ●	热点	提到	+ 3
				<i></i>		

可常用逻辑用语 ················ 001	第 17 练 任意角和弧度制及任意角的三角函数
式的性质与基本不等式 003	
函数、一元二次方程与不等式 … 005	第 18 练 诱导公式与同角三角函数的基本关系
勺概念及其表示 007	041
り单调性与最值 009	第 19 练 三角恒等变换 043
勺奇偶性、对称性与周期性 011	第 20 练 正弦、余弦、正切函数的图象与性质
数的性质与应用 013	
单选+3多选+3填空+函数性质	第 21 练 函数 $y=A\sin(\omega x+\varphi)$ 的图象变换
014	
对数的运算 016	第 22 练 函数 $y = A \sin(\omega x + \varphi)$ 的图象与性质及三
对数函数的图象及其性质 018	角函数模型的应用
f数、对数函数之间比较大小····· 020	第 23 练 正弦定理和余弦定理 051
的图象 022	第 24 练 正弦定理与余弦定理的应用 053
的零点与方程的解 024	第 25 练 解三角形解答题专练(一) 055
与数学模型 026	第 26 练 解三角形解答题专练(二) 057
数的零点的综合问题 028	▶ 阶段验收 3 8 单选 + 3 多选 + 3 填空 + 解三角形 +
的几何意义及其应用 029	函数与导数 059
与函数的单调性、极值与最值	第 27 练 平面向量的概念及其线性运算 061
031	第 28 练 平面向量的基本定理及坐标运算 063
与不等式的恒成立、能成立问题	第 29 练 平面向量的数量积 065
033	第 30 练 平面向量的综合应用 067
与函数的零点 035	第 31 练 复数 069
单选+3多选+3填空+函数与导数	
037	第 32 练 数列的概念及表示 ········ 072

第 33 练 等差数列、等比数列 074
第 34 练 由 a_n 与 S_n 的关系式与递推关系式求 a_n
076
第 35 练 数列求和 ······ 078
第 36 练 数列解答题专练(一) 080
第 37 练 数列解答题专练(二) 082
▶ 阶段验收 4 8 单选 + 3 多选 + 3 填空 + 数列 + 解三
角形+函数与导数 084
第 38 练 空间几何体的展开图、表面积与体积
第 39 练 球的切接问题 088
第 40 练 点、线、面的位置关系 090
第 41 练 空间中的平行与垂直
第 42 练 空间向量的运算及应用 094
第 43 练 空间角 096
第 44 练 立体几何解答题专练(一) 098
第 45 练 立体几何解答题专练(二) 100
▶ 热点提升 4 几何体的截面问题 102
▶ 热点提升 5 空间几何体的折叠与展开问题 103
▶ 阶段验收 5 8 单选 + 3 多选 + 3 填空 + 解三角形 +
数列+立体几何+函数与导数 104
第 46 练 直线与圆的方程
第 47 练 直线与圆、圆与圆的位置关系 109
▶ 热点提升 6 直线与圆中的最值问题 111
第 48 练 椭圆、双曲线的标准方程和几何性质
110

	第 49 练	抛	物线的标准方程和几何性质 …	• • • • • • •	114
	第 50 练	直	线与圆锥曲线的位置关系	•••••	116
	第 51 练	解	折几何解答题专练(一)	•••••	118
	第 52 练	解	折几何解答题专练(二)	•••••	120
•	热点提升	7	离心率问题	•••••	122
•	热点提升	8	圆锥曲线中的最值与范围问题	į	123
Ð	阶段验收	6	8 单选 + 3 多选 + 3 填空 + 解	三角刑	影 +
			函数与导数+立体几何+解析	f几何	
				•••••	124
	第 53 练	排	列组合、二项式定理	•••••	127
	第 54 练	古	典概型、概率的基本性质	•••••	129
	第 55 练	事	件的相互独立性、条件概率与	全概≅	率公
		式		•••••	131
	第 56 练	濧	散型随机变量及其分布列、均	值与方	差
		•••		•••••	133
	第 57 练	超	几何分布与二项分布、正态分	布	
		•••		•••••	135
	第 58 练	用	样本估计总体	•••••	137
	第 59 练	成	对数据的统计分析	•••••	139
	第 60 练	概	率与统计解答题专练(一) …	•••••	142
	第 61 练	概	率与统计解答题专练(二) …	•••••	144
Ð	阶段验收	7	8 单选+3 多选+3 填空+解	三角刑	影 +
			函数与导数 + 立体几何 + 解	析几何	ī +
			统计概率	•••••	146
■ \$	参考答案:				149

第1练 集合与常用逻辑用语 (时间:40分钟)

训练要点:集合的概念与表示、集合与元素的关系、集合与集合间的关系、集合的运算、充要条件的 判断、含量词命题的判断和否定

- 一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)
- 1. 已知集合 $M = \{0, 2, 5\}$,集合 $N = \{x \in \mathbb{N}^* \mid 0 \le x < 5\}$,则 $M \cap N =$ ()
 - A. $\{0,2,5\}$
- B. $\{0,2\}$
- C. $\{2,5\}$
- D. $\{2\}$
- 2. [教材改编] 命题"∀x∈R,x²+x+1>0"的否定为 ()
 - A. $\exists x \in \mathbf{R}, x^2 + x + 1 < 0$
 - B. $\exists x \in \mathbf{R}, x^2 + x + 1 \leq 0$
 - C. $\forall x \notin \mathbf{R}, x^2 + x + 1 \leq 0$
 - D. $\forall x \in \mathbf{R}, x^2 + x + 1 < 0$
- 3. 设集合 $A = \{x \mid x^2 + x 2 < 0, x \in \mathbb{R}\}, B = \{x \mid |x-1| < 1\}, 则 A \cup B =$ ()
 - A. $\{x \mid -1 < x < 2\}$
 - B. $\{x \mid 0 < x < 1\}$
 - C. $\{x \mid -2 < x < 2\}$
 - D. $\{x \mid 0 < x < 2\}$
- 4. 已知集合 $A = \{0,1,a^2\}, B = \{1,0,2a+3\},$ 若 A = B,则 a 等于 ()
 - A. -1 或 3
- B. 0 或 1

- C. 3
- D. -1

- 5. 已知 $p: \frac{x-1}{x+2} \le 0$, $q: -2 \le x \le 1$, 则 p 是 q 的
 - A. 充分不必要条件
 - B. 必要不充分条件
 - C. 充要条件
 - D. 既不充分也不必要条件
- 6. 已知集合 $A = \{(x,y) \mid y \ge x, x, y \in \mathbb{N}^* \}$, $B = \{(x,y) \mid x+y=8\}$,则 $A \cap B$ 中元素的个数为
 - A. 2

В. 3

C. 4

- D. 6
- 7. 某中学的学生积极参加体育锻炼,其中有 96%的学生喜欢足球或游泳,60%的学生喜欢 足球,82%的学生喜欢游泳,则该中学的学生 中,既喜欢足球又喜欢游泳的学生人数占该校 学生总数的比例是
 - A. 62%
- B. 56%
- C. 46%
- D. 42%
- 8. 已知 $U=\mathbf{R}$,集合 $A = \{x \mid x^2 x 2 = 0\}$, $B = \{x \mid mx + 1 = 0\}$, $B \cap (\mathcal{L}_U A) = \emptyset$,则实数 m 的值为
 - A. $-\frac{1}{2}$ 或 1
- B. $-\frac{1}{2}$ 或 0
- C. 1或0
- D. $-\frac{1}{2}$ 或 1 或 0

- 二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)
- 9. 下列命题中,是真命题的是 ()
 - A. $\forall x \in \mathbf{R}, x^2 \geqslant 0$
 - B. $\forall x \in \mathbf{R}, \left(\frac{1}{2}\right)^{x-1} > 0$
 - C. $\exists x \in \mathbf{R}, \lg x < 1$
 - D. $\exists x \in \mathbf{R}, \sin x + \cos x = 2$
- 10. 已知集合 $U = \{2,3,5,7,11,13,17\}, A = \{2,5,7,13\}, B = \{3,7,13,17\}, C = \{7,13\},则下 列关系正确的是 ()$
 - A. $(\mathcal{L}_U A) \cap (\mathcal{L}_U B) = \mathcal{L}_U (A \cup B)$
 - B. $\int_U (\int_U A) = \int_U (\int_U B)$
 - C. $A \cap C = B \cap C$
 - D. $f_U(A \cap B) = f_UC$
- **11.** 若" $\exists x \in \left[\frac{1}{2}, 2\right], 2x^2 \lambda x + 1 < 0$ "是假命题,则实数 λ 的值可能是
 - A. $\frac{3}{2}$

B. $2\sqrt{2}$

- C. 3
- D. $\frac{9}{2}$

- 三、填空题(本题共3小题,每小题5分,共15分)
- 12. 已知 $a,b \in \mathbb{R}$,集合 $\left\{a,\frac{b}{a},1\right\}$ 与集合 $\left\{a^2,a+b,0\right\}$ 相等,则 $a^{2024}+b^{2024}=$ _____.

13. 已知 $A = \left\{ x \left| \frac{2}{x+1} > 1 \right\}, B = \left\{ x \left| m \le x \le 2 \right\} \right\},$ 若 $A \cup B = B$,则实数 m 的取值范围是_______.

14. 设 $p:0 < \ln(x-2) \le \ln 3, q:2m \le x \le 2m + 3$. 若 $q \neq p$ 的必要不充分条件,则实数 m 的取值范围是

知识卡片

- (1) 若有限集 A 中有n 个元素,则 A 的子集有 2" 个,真子集有 2" -1 个,非空子集有 2" -1 个,非空子集有 2" -2 个.
- (2) 空集是任何集合的子集,是任何非空集合的真子集.
- $(3)A \cap B = A \cup B \Leftrightarrow A = B$.
- $(4)A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B \Leftrightarrow (\downarrow_U A) \supseteq (\downarrow_U B) \Leftrightarrow A \cap (\downarrow_U B) = \emptyset.$
- $(5) \ \mathfrak{l}_{U}(A \cap B) = (\mathfrak{l}_{U}A) \cup (\mathfrak{l}_{U}B); \ \mathfrak{l}_{U}(A \cup B) = (\mathfrak{l}_{U}A) \cap (\mathfrak{l}_{U}B).$
- (6)用 $\operatorname{card}(A)$ 表示有限集合 A 中元素的个数,对任意两个有限集合 A,B,有 $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) \operatorname{card}(A \cap B)$.

第2练 不等式的性质与基本不等式 (时间:40分钟)

训练要点:不等式的性质、比较大小、基本不等式及应用

- 一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)
- 1. [教材改编] 已知 $x,y \in \mathbb{R}$,设 $M = x^2 xy$, $N = xy y^2$,则 M 与 N 的值的大小关系是
 - A. M < N
- B. $M \leqslant N$
- C. M>N
- D. $M \geqslant N$
- 2. 已知 $a,b,c \in \mathbb{R}$ 且 a > b,则下列不等式一定成立的是 ()
 - A. $\frac{1}{a} < \frac{1}{b}$
- B. $a^2 > b^2$
- C. a |c| > b |c|
- D. $\frac{a}{c^2+1} > \frac{b}{c^2+1}$
- 3. 若 x > 0,则 $x + \frac{2}{x}$ 的最小值为 ()
 - A. 2

- B. 3
- C. $2\sqrt{2}$
- D. 4

- **4.** 已知 2<*a*<3,-2<*b*<-1,则 2*a*+*b* 的取值 范围是 ()
 - A. (2,5)
- B. (-5, -2)
- C. (1,3)
- D. (-3, -1)

- 5. 已知 x>0,y>0 且 $x+4y=1,则\frac{1}{x}+\frac{1}{y}$ 的最小值为 ()
 - A. $4\sqrt{2}$
- В. 8

C. 9

- D. 10
- 6. 已知 $x > 1, y > 0, x + y = 2, \text{则}(x 1) \cdot y$ 的最大值是 ()
 - A. $\frac{1}{4}$

B. $\frac{1}{2}$

C. $\frac{4}{9}$

- D. 1
- 7. 两个工厂生产同一种产品,其产量分别为a,b(0<a<b). 为便于调控生产,分别将 $\frac{x-a}{b-x}$ =
 - $1, \frac{x-a}{b-x} = \frac{a}{x}, \frac{x-a}{b-x} = \frac{a}{b} + x(x>0)$ 的值记为
 - A,G,H 并进行分析,则 A,G,H 的大小关系为 ()
 - A. H < G < A
- B. G < H < A
- C. A < G < H
- D. A < H < G
- 8. 已知正数 x,y 满足 $x+2y=1, 则 \frac{x^2+y}{xy}$ 的最
 - 小值为

(

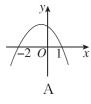
- A. $\frac{\sqrt{2}}{4}$
- B. $2\sqrt{2}$
- C. $\frac{2\sqrt{2}-1}{7}$
- D. $2\sqrt{2}+1$

- **二、选择题**(本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目 要求.全部选对的得6分,部分选对的得部分 分,有选错的得0分)
- 9. 已知 $a > b > 0, c > d > 0, \emptyset$
 - A. a-d>b-c B. ac>bd
 - C. $\frac{c}{b} > \frac{d}{d}$ D. $\frac{a}{b} > \frac{c}{d}$
- 10. 已知 a > 0, b > 0,且 a + 2b = 2,则
 - A. ab 的最大值为 $\frac{1}{2}$
 - B. $a + \frac{4}{a}$ 的最小值为 4
 - C. $a^2 + 4b^2$ 的最小值为 2
 - D. $\frac{2}{a} + \frac{1}{b}$ 的最大值为 4
- 11. 若实数 x, y 满足 $2^x + 2^{y+1} = 1$, 且 m = x + 1 $y, n = \left(\frac{1}{2}\right)^x + \left(\frac{1}{2}\right)^{y-1}$,则
 - A. $x < 0 \, \text{ll} \, y < -1$
 - B. m 的最大值为-3
 - C. n 的最小值为 7
 - D. $n \cdot 2^m < 2$

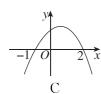
- 三、填空题(本题共3小题,每小题5分,共15分)
- **12.** 设 xy > 0,则 $\frac{2y-x}{x} + \frac{x+2y}{y}$ 的最小值为

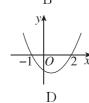
13. 已知-2 < 3a + 2b < 3, 2 < a - 3b < 4, 则 5a +76 的取值范围是 .

14. 若函数 $f(x) = x^2 + ax + b(a > 1)$ 的值域为 $[0,+\infty)$,则 $\frac{a+b+1}{a-1}$ 的最小值为_____.


- $(1) 若 a>0,b>0, 则 \frac{2}{\frac{1}{1+\frac{1}{t}}} \leqslant \sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \sqrt{\frac{a^2+b^2}{2}}, \\ \text{3 且仅当 } a=b \text{ 时, 等号成立.}$
- (2)应用基本不等式求最值要注意"一正,二定,三相等",忽略某个条件,就会出错.
- (3)在利用不等式求最值时,若多次使用基本不等式,则一定要保证它们等号成立的条件一致.

第3练 二次函数、一元二次方程与不等式 (时间:40 分钟)


训练要点:二次函数的图象与性质、一元二次方程的解法、一元二次不等式的解法、三个二次之间 的关系、对给定的一元二次不等式求参数范围


- 一、选择题(本题共8小题,每小题5分,共40 分. 在每小题给出的四个选项中,只有一项是 符合题目要求的)
- **1.** 「教材改编〕不等式 $x^2 + x 2 < 0$ 的解集为 ()
 - A. $\{x \mid -2 < x < 1\}$
 - B. $\{x \mid -1 < x < 2\}$
 - C. $\{x \mid x < -2 \text{ d} x > 1\}$
 - D. $\{x \mid x < -1 \text{ d} x > 2\}$
- **2.** 已知" $\forall x \in \mathbb{R}$,不等式 $x^2 4x a 1 \ge 0$ 恒 成立",则 a 的取值范围为
 - A. $(-\infty, -5]$ B. $(-\infty, -2]$

 - C. $(-5, +\infty)$ D. $[-5, +\infty)$
- **3.** 如果关于 x 的一元二次方程 $x^2 + 2mx +$ (m+2)=0有两个不同的正数实数根,那么 m 的取值范围为
 - A. (-2, -1)
 - B. (-1,2)
 - C. $(-\infty, -1) \cup (2, +\infty)$
 - D. $(-\infty, -2) \cup (-1, +\infty)$
- 4. 不等式 $cx^2 + ax + b > 0$ 的解集为 $\left\{ x \mid -1 < \right\}$ $x < \frac{1}{2}$,则函数 $y = ax^2 - bx - c$ 的图象大 致为

- **5.** 已知函数 $f(x) = -x^2 + ax + b^2 b + 1(a \in$ $\mathbf{R}, b \in \mathbf{R}$),对任意实数 x 都有 f(1-x) =f(1+x)成立. 若当 $x \in [-1,1]$ 时, f(x) > 0恒成立,则 b 的取值范围是
 - A. (-1,0)
 - B. $(2, +\infty)$
 - C. $(-\infty, -1) \cup (2, +\infty)$
 - D. 不能确定
- **6.** 已知二次函数 f(x) = (x-m)(x-n)+1(m < n),且 $x_1, x_2(x_1 < x_2)$ 是方程f(x) = 0的两根,则 x_1,x_2,m,n 的大小关系是 ()
 - A. $x_1 < x_2 < m < n$
 - B. $x_1 < m < x_2 < n$
 - C. $m < n < x_1 < x_2$
 - D. $m < x_1 < x_2 < n$
- 7. 若存在实数 x, 使得 $mx^2 (m-2)x + m < 0$ 成立,则实数m的取值范围为
 - A. $(-\infty,2)$
 - B. $(-\infty, 0] \cup (\frac{1}{3}, \frac{3}{2})$
 - C. $\left(-\infty,\frac{2}{3}\right)$
 - D. $(-\infty, 1)$
- 8. 在关于 x 的不等式 $x^2 (a+1)x + a < 0$ 的解 集中,恰有 3 个整数,则实数 a 的取值范围是

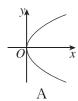
- A. (4,5)
- B. $(-3, -2) \cup (4, 5)$
- C. (4,5]
- D. $[-3, -2) \cup (4, 5]$

- 二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)
- 9. 已知 a > 0,函数 $f(x) = ax^2 + bx + c$,若 x_0 满 足关于 x 的方程 2ax + b = 0,则下列命题为真 命题的有
 - A. $\forall x \in \mathbf{R}, f(x) \leq f(x_0)$
 - B. $\forall x \in \mathbf{R}, f(x) \geqslant f(x_0)$
 - C. $\exists x \in \mathbf{R}, f(x) \leqslant f(x_0)$
 - D. $\exists x \in \mathbf{R}, f(x) \geqslant f(x_0)$
- **10.** 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $\{x \mid x < -3, \text{或 } x > 2\}$,则 ()
 - A. a > 0
 - B. 不等式 bx+c>0 的解集是 $\{x | x<-6\}$
 - C. a+b+c>0
 - D. 不等式 $cx^2 bx + a < 0$ 的解集是 $\left\{ x \mid x < -\frac{1}{2}, \text{或 } x > \frac{1}{3} \right\}$

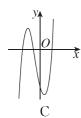
- 11. 已知函数 $f(x) = x^2 + ax + b(a > 0)$ 有且只有一个零点,则
 - A. $a^2 b^2 \le 4$
 - B. $a^2 + \frac{1}{b} \gg 4$
 - C. 若关于 x 的不等式 $x^2 + ax b < 0$ 的解集为 (x_1, x_2) ,则 $x_1x_2 > 0$
 - D. 若关于 x 的不等式 $x^2 + ax + b < c$ 的解集为 (x_1, x_2) ,且 $|x_1 x_2| = 4$,则 c = 4
- 三、填空题(本题共3小题,每小题5分,共15分)
- 12. 已知关于 x 的不等式 $x(x+a) \le 2$ 的解集为 [-1,b],则实数 b 的值为 .
- **13.** 已知关于 x 的方程 $x^2 a^2 x a + 1 = 0$ 的两根分别在区间 $(0,1),(1,+\infty)$ 内,则实数 a 的取值范围为_____.
- **14.** 若关于 x 的不等式 $ax^2 2x + 1 \le 0$ 在 (0,2] 上有解,则实数 a 的取值范围是_____.

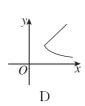
知识卡片

- 1. 解一元二次不等式的一般方法和步骤
- (1)化:把不等式变形为二次项系数大于零的形式;
- (2)判:计算对应一元二次方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式的解集为R或Ø);
- (3)求:求出对应的一元二次方程的根;
- (4)写:结合二次函数图象,利用"大于取两边,小于取中间"写出不等式的解集.
- 2. 不等式 $ax^2+bx+c>0$ (或 $\geqslant 0$)的恒成立、能成立问题


[a=0⇒代入计算

x 为任意实数 $\begin{cases} \forall (恒成立): \pi口方向、<math>\Delta \end{cases}$ $\exists (存在): 分离参数或分类讨论$


x 为某区间上的实数(分离参数法)→参数与无参函数的最值问题 {∀:大于最大,小于最小 ∃:大于最小,小于最大


训练要点:函数的概念与表示、函数的定义域、函数的值域、分段函数

- 一、选择题(本题共8小题,每小题5分,共40 分. 在每小题给出的四个选项中,只有一项是 符合题目要求的)
- 1. 下列图象可以表示以 x 为自变量的函数图象 的是

- 2. 函数 $f(x) = \frac{1}{\sqrt{x-2}} + \ln(4-x)$ 的定义域是
 - A. $(4,+\infty)$
- B. (2,4)
- C. [2,4)
- D. $(2,+\infty)$

)

- 3. 下列各组函数中是同一个函数的是
 - A. $f(x) = \sqrt{x^2}, g(x) = (\sqrt{x})^2$
 - B. $f(x) = x^2, g(x) = (x+1)^2$
 - C. $f(x) = \frac{x^2 1}{x + 1}, g(x) = x 1$
 - D. $f(x) = x + \frac{1}{x}, g(t) = t + \frac{1}{t}$

4. 已知函数 f(x)由下表给出:

x	1	2	3	4
f(x)	3	1	2	4

- 那么 f[f(3)] =

A. 1

B. 2

C. 3

- D. 4
- 5. 若函数 $f(x) = \begin{cases} 4\log_2(x-1), x > 1, \\ 2f(x+2), x \leq 1, \end{cases}$ 则

- D. 16
- **6.** 已知函数 f(x)的定义域为 $\{0,1,2\}$,值域为 $\{0,1\}$,则满足条件的函数 f(x)有
 - A. 1 ↑
- B. 6 个

- C. 8个
- D. 无数个
- 7. 已知函数 $f(x) = \begin{cases} (3a-2)x-4a, x < 1, \\ \log_{1} x, x \ge 1 \end{cases}$ 的值
 - 域为 \mathbf{R} ,则实数 a 的取值范围是
- A. $\left[-2, \frac{2}{3}\right)$ B. $\left(-\frac{2}{3}, 2\right]$
- C. $\left(-\infty, -\frac{2}{3}\right)$ D. $\left(0, \frac{2}{3}\right)$
- 8. 已知函数 $f(x) = \frac{1}{\sqrt{mr^2 + 2mx + 1}}$ 的定义域
 - 是 \mathbf{R} ,则 m 的取值范围是

- A. 0 < m < 1
- B. 0<*m*≤1
- C. $0 \le m < 1$
- D. $0 \le m \le 1$

- 二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)
- 9. 已知矩形的面积为 10,矩形的长为 x,宽为 y, 对角线长为 d,周长为 l,则下列关系式中正确的有 ()

A.
$$l = 2x + \frac{20}{r}(x > 0)$$

B.
$$y = \frac{10}{x}(x > 0)$$

C.
$$l = 2\sqrt{d^2 + 20} (d > 0)$$

D.
$$d = \sqrt{x^2 + \frac{100}{x^2}} (x > 0)$$

10. 下列函数中,其定义域与值域相同的是()

A.
$$y = \sqrt{x-1} + 1$$

$$B. \quad y = |\ln x|$$

C.
$$y = \frac{1}{3^x - 1}$$

D.
$$y = \frac{x+1}{x-1}$$

11. 已知函数 $f(x) = \begin{cases} x+2, x \leq -1, \\ x^2, -1 < x < 2, \end{cases}$ 则关于函

数 f(x)的结论正确的是

- ()
- A. f(x)的定义域为 R
- B. f(x)的值域为 $(-\infty,4)$
- C. 若 f(x)=3,则 x 的值是 $\sqrt{3}$
- D. f(x) < 1 的解集为(-1,1)
- 三、填空题(本题共3小题,每小题5分,共15分)
- 12. 已知函数 f(x)满足 $f(x)=2f(\frac{1}{x})+3x$,则 f(x)的解析式为 .
- 13. (1)已知函数 f(x)的定义域为[0,1],则函数 $f(x^2+1)$ 的定义域是_____;
 (2)已知函数 $f(x^2-2)$ 的定义域为[-1,3],则函数 f(x)的定义域是____;
 (3)已知函数 f(2x-3)的定义域为[1,3),则函数 f(1-3x)的定义域是
- 14. 函数 $f(x) = \frac{x-4}{2x+5}$ 在[-2,-1]上的取值范围是 .

知识卡片

求函数解析式的常用方法

- (1) 待定系数法: 若已知函数的类型, 可用待定系数法;
- (2)换元法:已知复合函数 f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围;
- (3)配凑法:由已知条件 f[g(x)]=F(x),可将 F(x)改写成关于 g(x)的解析式,然后以 x 替代 g(x),便得 f(x)的解析式;
- (4) 方程组法: 已知关于 f(x)与 $f(\frac{1}{x})$ 或 f(-x)的解析式,可根据已知条件再构造出另外一个等式,通过解方程组求出 f(x);
- (5)赋值法:通过给变量赋特殊值,求出特殊的函数值,进而得到 f(x)的解析式.

第5练 函数的单调性与最值

训练要点:求函数单调区间、已知单调区间求参数值(范围)、复合函数单调性、函数的最值

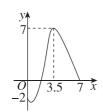
- **一、选择题**(本题共 8 小题,每 小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是 符合题目要求的)
- 1. 下列函数中,在区间(0,+∞)上单调递增的是
 - A. $f(x) = \frac{1}{\sqrt{x}}$
 - B. $f(x) = (x-1)^2$
 - C. $f(x) = \lg x$
 - D. $f(x) = (\frac{1}{2})^x$
- 2. 「教材改编〕已知函数 f(x)是 R 上的增函 数,函数 g(x)是 R 上的减函数,则下列函数 一定是增函数的是 ()
 - A. f(x) + g(x) B. f(x) g(x)
- - C. g(x) f(x) D. f(x)g(x)
- 3. 函数 $g(x) = \frac{2x-1}{x}$ 在区间 $\left[\frac{1}{2}, 2\right]$ 上的最小 值是
 - A. -1
- B. 0
- C. -2
- D. $\frac{3}{2}$
- 4. 函数 f(x)在[-3,-1]上单调递增,且 f(x)在[-3,-1]上的最小值为-2,最大值为1, 那么f(x) | 在[-3,-1]上的
 - A. 最小值为一2,最大值为1
 - B. 最小值为 0,最大值为 1
 - C. 最小值为 0,最大值为 2
 - D. 最小值为-2,最大值为 0

- 5. 用 $min\{a,b,c\}$ 表示 a,b,c 三个数中的最小 值. 设 $f(x) = \min\{2^x, x+2, 10-x\}(x \ge 0),$ 则 f(x)的最大值为
 - A. 4

B. 5

C. 6

- D. 7
- **6.** 已知 a > 0, 且 $a \neq 1$, 函数 f(x) = $\log_a(x-1)-1,x\geqslant 2$ 在 **R** 上单调,则 a 的取 值范围是
 - A. $(1,+\infty)$
- B. $\left[\frac{1}{3}, \frac{2}{3}\right]$
- C. $\left[\frac{2}{3}, 1\right)$
- D. $\left[\frac{1}{3}, 1\right)$
- 7. 已知函数 $f(x) = \lg(x^2 ax + 12)$ 在[-1,3] 上单调递减,则实数 a 的取值范围是
 - A. $\lceil 6, +\infty \rangle$
- B. [6,7)
- C. $(-\infty, -2]$ D. (-13, -2]
- 8. 已知函数 $f(x) = \begin{cases} -x^2 + 2mx m^2, x \leq m, \\ |x m|, x > m, \end{cases}$


若 $f(a^2-4) > f(3a)$,则实数 a 的取值范 围是

- A. (-1,4)
- B. $(-\infty, -1) \cup (4, +\infty)$
- C. (-4,1)
- D. $(-\infty, -4) \cup (1, +\infty)$

分,有选错的得 0 分) 9. 已知偶函数 f(x)定义在[-7,7]上,它在[0,

7]上的图象如图所示,则下列说法正确的是

()

- A. 函数 f(x)有三个单调递增区间
- B. 函数 f(x)有三个单调递减区间
- C. 函数 f(x)的最大值是 7
- D. 函数 f(x)的最小值是-2
- 10. 已知函数 $f(x) = x + \frac{4}{x}$, $g(x) = x^2 ax + 1$, 若对任意 $x_1 \in [1,3]$, $x_2 \in [1,3]$, 都有 $f(x_1) \geqslant g(x_2)$,则实数 a 的值可以是 () A. -2 B. -3 C. 2 D. 3

- 11. 函数 $f(x) = \log_a |x-1| (a>0$ 且 $a \neq 1$) 在 (0,1)上单调递减,则下列说法正确的是
 - A. f(x)在 $(1, +\infty)$ 上单调递增且无最大值
 - B. f(x)在 $(1,+\infty)$ 上单调递减且无最小值
 - C. f(x)的图象关于直线 x=1 对称
 - D. f(x)的图象关于点(1,0)对称
- 三、填空题(本题共3小题,每小题5分,共15分)
- **12.** 值域为 $(-\infty,1)$,且在 **R** 上单调递增的一个 函数 f(x) = ______.(写出一个满足条件的即可)
- 13. 已知 f(x)是定义在 $(0,+\infty)$ 上的增函数,且恒有 $f[f(x)-\ln x]=1$,则 f(x)的解析式为_____.
- 14. 已知定义在 R 上的函数 f(x)满足:对任意实数 a,b 都有 f(a+b)=f(a)+f(b)-1, 且当 x>0 时,f(x)>1. 若 f(2)=3,则不等式 $f(x^2-x-1)<2$ 的解集为

知识卡片

求值域的常用方法

- (1)配方法:二次函数型的函数均可以采用配方法求值域;
- (2)分离常数法:形如 $y = \frac{af(x) + b}{cf(x) + d} (ac \neq 0) (f(x))$ 为常见的基本初等函数)的函数常用分离常数法或反解法(即用 y 表示 f(x),然后借助 f(x)的取值范围求 y 的取值范围);
- (3)换元法:形如 $y=ax\pm b\pm \sqrt{cx\pm d}$,可以通过 $\sqrt{cx\pm d}=t$ 换元,转化为二次式配方求解,要注意换元后新元的取值范围. 对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求值域;
- (4)基本不等式法: 先对解析式变形, 使之具备"一正二定三相等"的条件后, 用基本不等式求出值域;
- (5)单调性法:先确定函数的单调性,再由单调性求值域.

训练要点:函数的奇偶性、函数图象的对称性、函数的周期性

- 一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)
- 1. 函数 y = f(x) 是定义在 R 上周期为 2 的奇函数,若 f(-0.5) = -1,则 f(2.5) = ()
 - A. -1
- B. 1

C. 0

- D. 0.5
- 2. 已知函数 $f(x) = x^4 + (b-3)x^3$ 是定义在 [a-15,4a]上的偶函数,则 a+b= ()
 - A. 4

B. 6

C. 8

- D. 0
- 3. 已知函数 $f(x) = \sin x$, $g(x) = e^{x} + e^{-x}$, 则下 列结论正确的是 ()
 - A. $f(x) \cdot g(x)$ 是偶函数
 - B. $|f(x)| \cdot g(x)$ 是奇函数
 - C. $f(x) \cdot |g(x)|$ 是奇函数
 - D. $|f(x) \cdot g(x)|$ 是奇函数
- 4. 若 $f(x) = \begin{cases} x 2(x < 10), \\ f(x 6)(x \ge 10), \end{cases}$ 则 f(57)的 值为
 - A. 1

В. 3

C. 5

D. 7

- 5. 已知 $f(x) = \frac{e^x}{1 e^{ax}}$ 是奇函数,则 a = ()
 - A. -2
- B. -1
- C. 2
- D. 1
- 6. 已知函数 f(x)的定义域为 \mathbb{R} ,则"f(x)的周期为 2"是" $f(x) = \frac{1}{f(x+1)}$ "的 ()
 - A. 充分不必要条件
 - B. 必要不充分条件
 - C. 充要条件
 - D. 既不充分也不必要条件
- 7. 已知 f(x), g(x)分别是定义在 **R**上的偶函数 和奇函数, 若 $f(x)-g(x)=2^{2-x}$,则 g(-1)=
 - **A.** 5

B. -5

C. 3

- D. -3
- 8. 已知函数 f(x)满足 $f(1) = \frac{1}{4}, 4f(x)f(y) = f(x+y) + f(x-y)(x, y \in \mathbf{R}),$ 则

$$\sum_{k=0}^{2024} f(k) =$$

()

- A. $\frac{1}{2}$
- B. $\frac{1}{4}$
- C. $-\frac{1}{4}$
- D. $-\frac{1}{2}$

- **二、选择题**(本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目 要求.全部选对的得6分,部分选对的得部分 分,有选错的得0分)
- 9. 「教材改编〕给定四个函数,其中是奇函数 的有
 - A. $f(x) = x^3$
- B. $f(x) = \frac{2}{x}$
- C. $f(x) = x^2 + 1$ D. f(x) = |x| 1
- **10**. 对于定义在 R 上的函数 f(x),下列说法正 确的是 ()
 - A. f(x+1) = f(x-1),则 f(x)的图象 关于直线 x=1 对称
 - B. 若 f(x)是奇函数,则 f(x-1)的图象关 于点(1,0)对称
 - C. 函数 y = f(1+x) 与函数 y = f(1-x) 的 图象关于直线 x=1 对称
 - D. 若函数 f(x-1) 的图象关于直线 x=1对称,则 f(x)为偶函数

- 11. 已知函数 f(x)的定义域为 \mathbf{R} ,且 $f(\frac{1}{2}) \neq 0$, 若 f(x+y)+f(x)f(y)=4xy,则 ()
 - A. $f(-\frac{1}{2}) = 0$
 - B. $f(\frac{1}{2}) = -2$
 - C. 函数 $f(x-\frac{1}{2})$ 是偶函数
 - D. 函数 $f(x+\frac{1}{2})$ 是减函数
- 三、填空题(本题共3小题,每小题5分,共15分)
- 12. 已知 f(x)是定义在 R 上的奇函数,当 x>0时, $f(x) = x^2 + \frac{1}{x} + 2$,则 f(-1) =_____, 函数 f(x)的解析式为
- 13. 已知定义在 R 上的偶函数 f(x)在 $(-\infty,0]$ 上单调递减,若 f(a-1) > f(2-a),则实数 a 的取值范围是 .
- 14. 定义在 R 上的奇函数 f(x)满足 f(2-x)= f(x), $\exists x \in [0,1]$ $\exists f$, $f(x) = \log_2(x+1)$, 则 f(2022) + f(2023) + f(2024) =

知识卡片

- 1. 奇(偶)函数定义的等价形式
- $(1) f(-x) = f(x) \Leftrightarrow f(-x) f(x) = 0 \Leftrightarrow f(x)$ 为偶函数;
- $(2) f(-x) = -f(x) \Leftrightarrow f(-x) + f(x) = 0 \Leftrightarrow f(x)$ 为奇函数.
- 2. 函数周期性常用结论

若a>0,对 f(x)定义域内任一自变量的值 x:

- (1) 若 f(x+a) = -f(x),则 T = 2a;
- (2) 若 $f(x+a) = \frac{1}{f(x)}$,则 T = 2a;
- (3) 若 $f(x+a) = -\frac{1}{f(x)}$,则 T = 2a.
- 3. 对称性的两个常用结论
- (1) 若函数 y=f(x+a) 是偶函数,即 f(a-x)=f(a+x),则函数 y=f(x)的图象关于直线 x=a
- (2) 若函数 y = f(x+b) 是奇函数,即 f(-x+b) + f(x+b) = 0,则函数 y = f(x)的图象关于点 (b,0)中心对称.

热点提升 1 函数的性质与应用 (时间:40 分钟)

训练要点:函数的单调性、奇偶性、对称性、周期性及其综合应用

- **一、选择题**(本题共7小题,每小题5分,共35 分. 在每小题给出的四个选项中,只有一项是 符合题目要求的)
- 1. 下列函数中,既是偶函数又在区间 $(0,+\infty)$ 上 单调递增的是
 - A. $y = \ln x$
- B. $y = x^{3}$
- C. $y = |x| + \frac{1}{|x|}$ D. $y = 2^{|x|}$
- 2. 函数 $f(x) = \log_2(x^2 3x 4)$ 的单调递减区 间为
 - A. $(-\infty, -1)$ B. $(-\infty, \frac{3}{2})$
 - C. $(\frac{3}{2}, +\infty)$ D. $(4, +\infty)$
- 3. 若 $f(x) = (x+a) \ln \frac{2x-1}{2x+1}$ 为偶函数,则 a =

- A. -1 B. 0 C. $\frac{1}{2}$ D. 1

- 4. 已知函数 $f(x) = \begin{cases} -\left(\frac{1}{2}\right)^x, a \le x < 0, \\ (a < 0) \end{cases}$

的值域是[-8,1],则实数 a 的取值范围是

()

- A. $(-\infty, -3]$ B. [-3, 0)
- C. $\lceil -3, -1 \rceil$
- D. $\lceil -3, +\infty \rangle$
- **5.** 若偶函数 $f(x)(x \in \mathbf{R})$ 满足 $f(x) \cdot f(x +$ 1)=1, f(-2)=-1, M f(2025)= () A. 2 B. -2 C. 1 D. -1
- **6.** 已知定义在**R**上的奇函数 f(x)满足 f(xf(x) = -f(x),且 f(x) 在区间[0,2]上单调递 增,则
 - A. f(-15) < f(21) < f(90)
 - B. f(90) < f(21) < f(-15)
 - C. f(-15) < f(90) < f(21)
 - D. f(21) < f(-15) < f(90)
- 7. 定义在 R 上的奇函数 f(x)在 $(-\infty,0)$ 上单 调递减,且 f(3) = 0,则满足 $(x+1) f(x) \ge 0$

的 x 的取值范围是

- A. $\lceil -3, -1 \rceil \cup \lceil 0, +\infty \rangle$
- B. $\lceil -3,0 \rceil \cup \lceil 0,+\infty \rangle$
- C. $\lceil -3, -1 \rceil \cup \lceil 0, 3 \rceil$
- D. $(-\infty, -3] \cup [0,3]$
- **二、选择题**(本题共2小题,每小题6分,共12 分. 在每小题给出的选项中,有多项符合题目 要求,全部选对的得6分,部分选对的得部分 分,有选错的得0分)
- 8. 已知函数 f(x)是定义在 R 上的奇函数,则下 列说法正确的是
 - A. f(0) = 0
 - B. 若 f(x)在 $[0,+\infty)$ 上有最小值-1,则f(x)在 $(-\infty,0]$ 上有最大值 1
 - C. 若 f(x)在[1,+ ∞)上单调递增,则 f(x) $在(-\infty,-1]$ 上单调递减
 - D. 函数 f(x+1)是奇函数
- 9. 已知函数 y = f(x) 是定义在 R 上的奇函数, 且满足 f(2+x) = f(2-x),则下列说法正确 的是
 - A. f(2024) = 0
 - B. y = f(x-2) 是奇函数
 - C. f(4-x) = -f(4+x)
 - D. y = f(x) 是周期为 4 的周期函数
- 三、填空题(本题共3小题,每小题5分,共15分)
- 10. 一个同时具有下列性质①②③,且定义域为 **R** 的函数 f(x) = . ①最小正周期为 1;②f(-x) = f(x);③无 零点.
- 11. 已知定义在 R 上的函数 f(x)满足 f(x)= f(2-x),对任意 $x_1, x_2 \in [1, +\infty)$,且 $x_1 \neq$ x_2 , 都有 $\frac{x_1-x_2}{f(x_1)-f(x_2)} > 0$, 则 不 等 式 $f(2x-1)-f(3-x) \ge 0$ 的解集为
- 12. 已知函数 f(x)是定义域为 R 的奇函数,当 $x \ge 0$ 时, f(x) = x(x+2). 若 f(3+m) +f(3m-7)>0,则 m 的取值范围为 .

- **一、选择题**(本题共 8 小题,每 小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一项是 符合题目要求的)
- 1. 设全集 $U = \mathbf{R}$,集合 $A = \{x \mid -1 \le x \le 1\}$,B = $\{-2, -1, 0, 1, 2\}, \text{ M}(\mathcal{L}_U A) \cap B =$ ()
 - A. {2}
- B. $\{-2,2\}$
- C. $\{-1,0,1\}$
- D. $\{0,1,2\}$
- 2. 已知命题 $p:\exists x > 1, x^2 + 1 > 0$,则命题 p 的 否定是
 - A. $\forall x > 1, x^2 + 1 > 0$
 - B. $\forall x > 1, x^2 + 1 \leq 0$
 - C. $\exists x > 1, x^2 + 1 \le 0$
 - D. $\exists x \leq 1, x^2 + 1 \leq 0$
- 3. 已知函数 y = f(x)的定义域为 \mathbf{R} ,则"y =f(x)是偶函数"是"y=|f(x)|是偶函数"的
 - A. 充分不必要条件
 - B. 必要不充分条件
 - C. 充要条件
 - D. 既不充分也不必要条件
- 4. 已知函数 $f(x) = \ln|x| \frac{1}{\ln|x|}$,则下列说法 正确的是
 - A. f(x)是奇函数,且在(0,1)上单调递减
 - B. f(x) 是奇函数,且在 $(0,+\infty)$ 上单调递增
 - C. f(x) 是偶函数,且在 $(0,+\infty)$ 上单调递增
 - D. f(x) 是偶函数,且在 $(-\infty,-1)$ 上单调 递减

- **5**. 已知正实数 a,b 满足 a + 4b = ab,则 a + b 的 最小值为
 - A. 4

B. 9

C. 10

- D. 20
- 6. 已知幂函数 $f(x)=x^{\alpha}$ 的图象过点 $\left(3,\frac{1}{3}\right)$,则

函数
$$g(x) = (2x-1) f(x)$$
 在区间 $\left[\frac{1}{2}, 2\right]$ 上的最小值是

- A. -1
- B. 0
- C. -2
- D. $\frac{3}{2}$
- 7. 已知函数 $f(x) = \begin{cases} \sqrt{x}, x > 0, \\ \frac{1}{2}x + 1, x \leq 0, \end{cases}$ 若 m < n,
 - f(n) = f(m),则 n-m 的取值范围是 ()
 - A. (1,2]
- B. [1,2)
- C. $\left(\frac{3}{4}, 2\right]$ D. $\left[\frac{3}{4}, 2\right)$
- 8. 已知 f(x)为偶函数,且函数 g(x)=xf(x)在 $[0,+\infty)$ 上单调递减,则不等式(1-x) f(x-1)+2xf(2x)>0的解集为
 - A. $\left(-\infty,\frac{1}{3}\right)$
- C. $(\frac{1}{3}, +\infty)$ D. $(-1, +\infty)$

- **二、选择题**(本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目 要求.全部选对的得6分,部分选对的得部分 分,有选错的得0分)
- 9. 下列函数中,在定义域内既为奇函数,又为增 函数的是
 - A. $f(x) = x^{\frac{1}{3}}$
 - B. f(x) = |x|(x+2)
 - C. $f(x) = \frac{e^x 1}{e^x + 1}$
 - D. $f(x) = \ln(\sqrt{x^2 + 1} x)$
- 10. 已知函数 f(x)的定义域为 \mathbf{R} , f(xy) = $y^2 f(x) + x^2 f(y)$,则下列说法正确的是

)

- A. f(0) = 0
- B. f(-1) = -1
- C. f(x) 为偶函数
- D. 若 $f(2) = \frac{1}{2}$,则 $f(-\frac{1}{2}) = -\frac{1}{32}$
- 11. 若实数 x,y 满足 $x^2+y^2-xy=1,$ 则 ()
 - A. x + y < 1
- B. $x+y \ge -2$
- C. $x^2 + y^2 \ge 1$ D. $x^2 + y^2 \le 2$
- 三、填空题(本题共3小题,每小题5分,共15分)
- 12. 已知函数 $f(x) = \begin{cases} \log_2(1-x), x < 0, \\ 4^x, x \ge 0. \end{cases}$ 则 $f(-7) + f(\log_4 3) =$
- 13. 已知函数 f(x)的定义域是[-2,1],则函数 $g(x) = \frac{f(x+1)}{x+2}$ 的定义域是_____.

- 14. 已知函数 f(x+1)是奇函数, f(x+2)是偶 函数, 当 $x \in [2,3]$ 时, f(x) = 3-x, 则 $f(0) + f(1) + f(2) + f(3) + \cdots +$ f(2023) + f(2024) = .
- 四、解答题(本题共1小题,共17分)
- **15.** 已知函数 $f(x) = \log_2(2^x + 1) + ax$ 是偶 函数.
 - (1)求 a 的值;
 - (2)设 $g(x) = f(x) + x, h(x) = x^2 2x + x$ m,若对任意的 $x_1 \in [0,4]$,存在 $x_2 \in [0,5]$, 使得 $g(x_1) \ge h(x_2)$,求 m 的取值范围.